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Flight projects relying on the DSN’s X-band receiving facilities for X-band
telemetry and/or tracking require some technique for generating test cases of
degradations to use in mission sequence planning exercises and even in data rate
selection. It is, for example, known that the X-band noise temperature of DSN
receivers can go up from 20 K to over 100 K or more, if the air is heavily laden
with water vapor, although that is an uncommon occurrence. It is proposed that
the DSN furnish flight projects relying on X-band degradation models, one for
each DSN Complex. Such models would be in the form of a random process
generator, say in an MBASIC program, that would permit the project to generate
X-band degradation data with the right autocorrelations for periods of interest
to the Projects. The autocorrelation modeling is especially important because
bursts of degradation lasting several days can affect data storage and mission
sequence design strategy. This article therefore presents one approach which
works if the degradation statistics obey a half-gaussian law. That is, the random
variables are formed by taking the absolute values of another set of random
variables, themselves having a (two-sided) gaussian distribution. The technique
of this paper then permits the half-gaussian random variables to have given one-
and two-step correlation coefficients.

I. Introduction

Flight projects relying on the DSN’s X-band receiving
facilities for X-band telemetry and/or tracking require
some technique for generating test cases of degradations
to use in mission sequence planning exercises and even in
data rate selection. It is, for example, known that the
X-band noise temperature of DSN receivers can go up
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from 20 K to over 100 K or more, if the air is heavily
laden with water vapor, although that is an uncommon
occurrence. It is proposed that the DSN furnish flight
projects relying on X-band degradation models, one for
each DSN Complex. Such models would be in the form
of a random process generator, say in an MBASIC pro-
gram, that would permit the project to generate X-band
degradation data with the right autocorrelation for peri-
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ods of interest to the projects. The autocorrelation model-
ing is especially important because bursts of degradation
lasting several days can affect data storage and mission
sequence design strategy. This article therefore presents
one approach which works if the degradation statistics
obey a half-gaussian law. That is, the random variables
are formed by taking the absolute values of another set
of random variables, themselves having a (two-sided)
gaussian distribution. The technique of this paper then
permits the half-gaussian random variables to have given
one- and two-step correlation coefficients, if non-negative.
A modification, to be reported separately, can be used to
match negative correlations.

Mathematically, the primary problem is to find cor-
relation coefficients p,, p, for the intermediate gaussian
random variables which will lead to the desired correla-
tions A, and A, for the half-gaussian variables. Thus, we
need to find p,(A:), and p,(X,). The nature of the bivariate
gaussian distribution makes the calculation of A(p) fea-
sible. A two-step process is therefore followed: the func-
tion A(p) is found (see Section 1), then is inverted to get
p()) by numerical means (Section III).

In Section IV we outline a method for generating a
sequence of gaussian random variables with one- and
two-step correlations p,, p,, from an uncorrelated set of
normal gaussian random variables. The algorithm de-
scribed in Section IV can easily be extended to the case
of more than two correlations. Section V briefly describes
a program written in the MBASIC language implement-
ing the above algorithms, and it describes how to create
a set of standard gaussian random numbers from a set
of random variables distributed uniformly. Some sample
output from the program is also given. Section VI is an
informal “Software Specification Document” (SSD) for
the program,

Il. Determining the Intermediate Correlation

Given two normally distributed random variables X, X,
with mean 0, variance 1 and correlation p(X,,X,), we
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wish to find Corr (]X,|,|X.|) = A(p). Our starting point
is the distribution function

F(aya,) = / ' / * (X0, Xop)dXodX

for X,,X,, where f is the bivariable normal density cen-
tered at the origin:
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Let G(a,a,) denote the distribution function for
[X,],| X;|. If either a, or a, is less than O then Gla,a,) = 0,
otherwise we have
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The next step is to calculate the expectation of
| Xa], [ Xz |-

E(|X],
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Thus,

2
E(|X.},|X.]) = — (VI = p* + parcsinp)

For p = 1 we obtain E(X?) = 1; p = 0 implies

2 2
[E]Xi|]2:7,so Var(Xi):l—T
Therefore
Z (I — p* + parcsinp — 1)
ki3
Corr (| Xy|,| X:|) = 5
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V1 —p?+ parcsinp — 1
_ p 7TP P = A(p)
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lI. Calculation of p(»)

We calculate p(A) given the relation

V1 — p?+ parcsinp — 1
Mp) = £ WP P
5 1

; o<r< (D)

A useful observation is (=/2 — 1)dAr/dp = arcsinp =
p+1/6p* 4+ 3/40p° + .... Integrating this formula
gives a Taylor series for (x/2 — 1)\ and, upon formal
inversion, we obtain:

p*(\) = 2, — 1/3 A% — 4/45\¢ — 11/189 A
— 722/14175 X3 — 0.05203 A% — 005087 A]

where A, = (z/2 — 1)A. Over the interval [0,0.5] this
seven-term series will find p to within the theoretical
error bound of 2+10*. An actual computer calculation
using this series, then converting back via Eq. (1) gives
an accuracy to within 10 over [0,0.5] with the largest
error at A = 0.5, (The difference between the two num-
bers is simply an example of the fact that calculations
often work out much better than theoretical error bounds
would indicate.)

When A approaches 1, the above series gives inaccurate
results. An alternate method is to use the Lagrange
Interpolation polynomial for p over the interval [0.5,1],
with mesh points 0.5, 0.6,..,1. The result is p(A) =
0.2862 + 1.0558) — 0.0470A* — 0.9506A° + 1.0072a*
—0.3516x°. The theoretical error bound is 7+ 10, mainly

182

due to rounding. A computer calculation using this for-
mula gave accuracy to within 4+ 10 over [0.5,1].

IV. Generating Random Variables With Given
One and Two-Step Correlations

We now give a method for generating a sequence {X;}
of gaussian random variables with given one-step correla-
tion p,(X;,X;.,) and two-step correlation p,(X;,Xi,»). Con-
sider a process of the form

X2 = aXin + BX; + Yise 1)

where a and B are coefficients to be determined, and the
y; are standard normal gaussian random variables.

Multiplying Eq. (1) by X;,X;,, and taking expectations,
we find that piol, = dehs + BP0t and p.ot. = apioin
+ Bo? where o} = E(X3). For Eq. (1) to be a stationary
process it is required that ¢; = oi.; for k > 0; in this case
we may solve for a and B, giving a = p; — p.p./1 — pi
and g = p, — p3/1 — pi. It is also possible to solve for
o] — 0o, Writing E(Xi+2 - (IXiH - BXi)Z - Ey%n =1 we
find o2 = 1 — p3/(1 — p:)(1 + p: — 2p3). Since o* > O this
gives us the inequality 1 + p, — 2pi > 0.

To begin generating {X;} we normalize X,,X, using
the above value for ¢ as follows:

1+ [1—p;
Xi=o 5 Yy, +O’_V_'2—_Ug,
1+ p, }1— 1
X =a 2P Yo~ o 2p Yo

This gives the proper correlation and variance for X,,X..
Equation (1) may now be used to calculate X3,X,, .. ..

V. Program Organization

A program has been written in the MBASIC* language
to carry out the generation of a sequence of correlated
“half gaussian” random variables, relying on the proce-
dures described above.

The MBASIC random number generator gives num-
bers which are uniformly distributed, so the first step is
to produce a sequence of standard normal gaussian num-
bers from the uniform distribution, via the central limit

1The DSN standard nonreal-time language.
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theorem. If y; is the ith standard gaussian, X the Kth
random number from the MBASIC generator, we may
write

Yi :Z(Xlz(i—l)+K - 1/2)
k=1

A uniform distribution over [0,1] has mean 1/2, variance
1/12, so each Xy —'/2 has mean 0, and adding 12 of
them gives a random variable with variance 1. In addi-
tion, the y; will be very nearly gaussian, as a result of the
central limit theorem.

Using the numerical methods described above, the next
step in the program is to calculate the intermediate cor-
relations. Then the stationary random process is used (if
the correlations satisfy the required inequality) to gener-
ate random variables with the intermediate correlations.
The absolute values of these random variables are then
taken to give our desired sequence of “half gaussian”
random variables with the given correlations.

A word of caution. We have not yet proved that any
non-negative two-step correlation function {,, .} which
can arise as the correlation function of some stationary
process whose 1-dimensional marginals have the same
distribution as the absolute value of a centered gaussian
can also arise as the two-step correlation function of
the absolute value of a centered jointly (the key word)
gaussian process. We can prove, however, that this is the
case provided.

1
A <A —= ) =~ 04598
B <\/§)

Since in most applications A, and X, would be reasonably
close to 0, this gap should not arise in practice, if indeed
it can arise at all.

A typical run of the program is shown in Fig. 1.

VI. Program Description
A. General Description

This section is essentially a Software Specification
Document (SSD) for an MBASIC program CORGS2. The
purpose of CORGS2 is the generation of a set of “half-
gaussian” random variables (the elements of which are
formed by taking the absolute values of the members of
a set with a normal distribution) with given one- and
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two-step correlations. The subsequent numbering refers
to module numbers in the structured flowcharts. Three
main steps are involved. First, a set of random variables
(normal distribution) is produced with mean 0, variance
1. Then these are used to generate a new set of gaussian
random variables with known one- and two-step correla-
tions, via a stationary gaussian stochastic process. Finally,
the absolute values of these numbers are taken (with the
appropriate scaling factor introduced to give the correct
standard deviation) to produce our set of half-gaussian
random numbers.

B. Level 1 Detailed Description
1.1

This module has two purposes. The first is the declara-
tion of the subroutine addresses for the subprograms of
CORGS2. Then input is obtained for N, the number of
half-gaussian random variables to be produced by the
user respouse to a prompting message.

Variables:

N: wuser response to the prompting message, the
number of half-gaussians to be generated.

1.2 (ASSIGN)

In this module all necessary variables are declared and
the random number generator is initialized to some posi-
tive value in order to insure a repeatable sequence of
random variables.

1.3 (INPT)

Input is obtained for LAMBDA(1), LAMBDA(2) (the
one- and two-step correlations) and sigma (the final scal-
ing factor) by means of user response to prompting
messages.

Variables
LAMBDA(1): The one-step correlation of the half-
gaussian random variables.
LAMBDA(2): The two-step correlation of the half-
gaussian random variables.
SIGMA: The scaling factor which determines
the final standard deviation.
14 (INDGS)

In this module we generate an array (GO1) of gaussian
random variables with mean 0, variance 1, by means of
two nested loops.
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Variable:

GO1: A numeric array variable of length
N consisting of uncorrelated stan-
dard normal random numbers.

1.5 (CORGS)

An array (GRHO) of random numbers is generated
with intermediate one-step correlation RHO(1), two-step
correlation RHO(2).

Variable:

GRHO: A numeric array of length N consist-
ing of random variables with mean
0, variance 1 and one-step correla-
tion RHO(1), two-step correlation

RHO(2).
1.6 (HALFGS)

An array of half-gaussian random numbers (GHALF)
is produced with one-step correlation LAMBDA(1), two-
step correlation LAMBDA(2).

Variable:

GHALF: A numeric array variable of length
N, the “half-gaussian” random vari-
ables.

1.7 (PRNT)

A prompting question determines whether the user
wants a printout of the array GHALF of half-gaussian
random numbers; with an affirmative answer the array
GHALF is printed.

Variables:

ANSS: A simple string variable accepting
only the initial character of the user’s
response. ANS$="Y" means output is
desired, ANS$="N" means the oppo-
site.

OK: A simple numeric variable, the con-

dition of a correct user response to
the prompting question.

See Fig. 2 for flowchart.

C. Level 2 Detailed Design
1.1

The subroutine addresses are first declared as follows:
ASSIGN = 100200, INPT = 100300, INDGS = 100500,
CORGS = 100600, HALFGS = 100800, PRNT = 100900.
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Then a prompting message is printed asking for the num-
ber of random variables needed. The message is “ENTER
N, THE NUMBER OF CORRELATED HALF-
GAUSSIAN RANDOM NUMBERS DESIRED:”.

Variable defined

N, a simple numeric variable input in 1.1.

1.2 ASSIGN Detailed Design: Level 2

The purpose of ASSIGN is to declare all necessary
variables and to initialize the random number generator
at a positive value to produce a repeatable sequence of
random numbers.

1.2.1 Declare variables with explicit declarations.
The declaration of the numeric variables is: Real
GO1(N), X(N), GRHO(N), GHALF(N), LAMBDA(2),
RHO(2), SIGMA, ADJ, OK, R, S. The string declara-
tion is: STRING ANS$:1.

Variable definitions

GO01 a numeric array of length N generated in 1.4.1-
1.4.3; X, a numeric array of length N generated in
1.5.8-1.5.10; GHALF, a numeric array of length N (con-
sisting entirely of positive numbers) calculated in
1.6.1-1.6.2; LAMBDA, a numeric array of length 2
input in 1.3.1-1.3.2; SIGMA, a simple numeric variable
input in 1.3.3; RHO, a numeric array of length 2 calcu-
lated in 1.5.1-1.54; AD]J, a simple numeric variable
defined in 1.5.3; OK, a simple numeric variable defined
in 1.7.1 and reevaluated in 1.7.4; ANS$, a simple string
variable input in 1.6.3.

1.2.2 Initialize the random number generator with
the declaration: RANDOMIZE 518997. Any positive
number may be used, but the following should be
noted. Large positive numbers seem to give the best
results, so six digits are advisable. Also, they should
be chosen by some random means, which in this case
consisted of choosing cards from a deck, face cards
removed, and sampling with replacement.

See Fig. 3 for flowchart.
1.3 INPT Detailed Design: Level 2

In this module we obtain from user, via a series of
prompting messages, values which will determine the
statistical characteristics of the half-gaussian random
variables.

Inputs

A. LAMBDA(1), a numeric variable input in 1.3.1
which must satisfy 0 < LAMBDA(1) <1.
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B. LAMBDA(2), a numeric variable input in 1.3.2
which must also satisfy 0 < LAMBDA(2) < 1.

C. SIGMA, a numeric variable input in 1.3.8 which
must be positive,

Outputs

A. Prompting message “ENTER LAMBDA(1), THE
ONE-STEP CORRELATION OF THE HALF-
GAUSSIAN RANDOM NUMBERS (NOTE THAT
LAMBDA(1) MUST BE NON-NEGATIVE AND
LESS THAN 1).”

B. Prompting message “ENTER LAMBDA(2), THE
TWO-STEP CORRELATION OF THE HALF-
GAUSSIAN RANDOM NUMBERS (NOTE THAT
LAMBDA(2) MUST BE NON-NEGATIVE AND
LESS THAN 1.7

C. Prompting message “ENTER SIGMA, THE STAN-
DARD DEVIATION OF THE FULL-GAUSSIAN
DISTRIBUTION (NOTE THAT SIGMA MUST
BE POSITIVE):”

1.3.1 Print prompting message A to user asking for
the final one-step correlation.

Variable defined
LAMBDA(1), a numeric variable input in 1.3.1.

1.3.2 Print prompting message B to user asking for
the final two-step correlation.

Variable defined
LAMBDA(2), a numeric variable input in 1.3.2.

1.3.3 Print prompting message C to user asking for
the final scaling factor,

Variable defined

SIGMA, a simple numeric variable input in 1.3.3. The
standard deviation of the half-gaussian random vari-
ables should be approximately SIGMA*\/{1—2/x).

See Fig. 4 for flowchart.

1.4 INDGS Detailed Design: Level 2

In this module an array (GO1) of gaussian random vari-
ables is generated with mean 0, variance 1, by means of
two nested loops.
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1.4.1 The index I is first initialized to 1. At each
execution of the loop it is determined whether I>N;
if not, control is passed on to 1.4.2; if the inequality
holds, then control is transferred to 1.5.1.

1.4.2 This loop starts with J=1; if J<12 control is
passed to 1.4.3 then back to 1.4.2 where | is incre-
mented by 1, if J>12 control is transferred to 1.4.1.

143 A random variable is produced with mean 0,
variance 1. From an MBASIC random number (RNDM)
1/2 is subtracted to produce a random variable with
mean 0, variance 1/2. Each time control is passed from
1.4.2 another of these random variables is added on to
the previous result, which increments the variance by
1/12; the basic step is GO1(I)=G01(I)+ RNDM —1/2.
After control is passed to 1.4.3 for the twelfth time,
GOl will have variance 1 (and still have mean ¢).
Control is then returned to 1.4.1.

Variable definition
GO01, a numeric array variable generated in 1.4.1-1.4.3,

See Fig. 5 for flowchart.

1.5 CORGS Detailed Design: Level 2

The purpose of CORGS is to produce an array (GRHO)
with proper one- and two-step correlations so that when
the absolute values of the elements of GRHO are taken,
the new array has our desired correlations LAMBDA(1)
and LAMBDA(2). Therefore we must first determine the
correct intermediate correlations (RHO(1) and RHO(2))
which will lead to the final correlations (LAMBDA(1)
and LAMBDA(2)), then produce GRHO using the array
GO01 by means of a stationary stochastic process.

It is possible that the numbers RHO(1) and RHO(2)
will not lead to a stationary process; if they do not, an
error message will be printed and the program terminated.

Outputs

A. Error message: “LAMBDA(1) AND LAMBDA(2)
ARE NOT ACCEPTABLE CORRELATIONS”

B. TERMINATING MESSAGE “CORGS2 TERMI-
NATED”

C. “THE INTERMEDIATE ONE-STEP CORRELA-
TION 1S:”

D. “THE INTERMEDIATE TWO-STEP CORRELA-
TION IS:”
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1.5.1 Initialize the index I to 1 and pass control to
1.5.2. Control will be passed back to 1.5.1 from 1.5.3
and I is incremented by 1 at that stage; then if I>N,
control is transferred to 1.5.4; if not, control is again
passed on to 1.5.2.

1.5.2 The correlation RHO(I) is determined for the
interval 0<LAMBDA(I)<1/2 by the formula
RHO(I) =SQR(2*ADJ**2 —(4/45)*ADJ**3 —(11/189)*
ADJ**4—(722/14175)*AD]**5— (.05203)*ADJ**6
- (.05087)*ADJ**7) where ADJ=LAMBDA(I)*(~/2
—1) (this is the first seven terms of a Taylor series).
Control is passed to 1.5.3.

Variable definitions

LAMBDA(I), a numeric variable input in 1.3.1 or 1.3.2;
RHO(I), a numeric variable calculated in 1.5.1-1.5.3;
AD], a simple numeric variable defined in 1.5.2,

153 RHO(I) is calculated over the interval
S<LAMBDA(I)<1 by the formula RHO(I)=.2862
+1.0558* LAMBDA(I) — .0470*LAMBDA(I)**2
~.9506*LAMBDA(I)**3+1.0072* LAMBDA (I)**4
—.3516*LAMBDA(I)**5. This is the “Lagrange inter-
polation polynomial” for RHO(I) of degree 5 over
[.5,1] with equally spaced points. Control is passed
to 1.3.1.

Variable definitions

RHO(I), a numeric variable calculated in 1.5.1-1.5.3;
LAMBDAC(I), a numeric variable input in 1.3.1 or 1.3.2.

1.54 We now use the calculated values of RHO(1),
RHO(2), and the array GOl to produce an array
GRHO of correlated random variables. This is done by
means of a stationary stochastic process and an inter-
mediate array, X, which will give us our array GRHO
when its members are normalized. However, it
14+RHO(2)—2*RHO(1)**2<0 then the stochastic
scheme will not be stationary. In this case, we cannot
generate an array of half-gaussians corresponding to
the values of LAMBDA originally input, so control is
passed to 1.5.5 and the program is terminated. If the
correlations are valid (i.e., the above inequality does
not hold) then control goes to 1.5.6.

Variable definition
RHO(I), a numeric variable calculated in 1.5.1-1.5.3.

1.5.5 Print error messages A and B, then terminate
program,
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Variable defined

LAMBDA, a numeric variable input in 1.3.1 and 1.3.2,

1.5.6 Print messages C and D along with RHO(1),
and RHO(2) to four-decimal-place accuracy.

Variable defined

RHO, a numeric array variable calculated in 1.5.1-
1.5.3.

1.5.7 The first two random variables (GOI1(1) and
G01(2) produced in 1.4.3 must be normalized to begin
the stationary stochastic process which will lead to the
correlated gaussian array GRHO. We set X(1)=
R*GO1(1)+S*G01(2), X(2)=R*G01(1)—S*G01(2)
where

R=+/(I=RHO{I)**2)*(1+ RHO())/
VZFI—RHO))*(1 T RHO2) — 2*RHO(1)**2)

and

S=/(I—RHOL)*2)*(1—RHO(1))/
V2¥(1—RHO(@))*(1+ RHO{2)— 9*RHO{1)**2.

Variable definitions

GOl, a numeric array generated in 1.4; GRHO, a
numeric array generated in 1.5.10-1.5.11; X, a numeric
array generated in 1.5.7-1.59; R, S, simple numeric
variables defined in 1.5.7.

1.5.8 This loop generates the rest of the array X. The
index I is first set to 3, it is increased by one every time
control returns from 1.5.9. If I>>N control is transferred
to 1.5.10, if not, control passes to 1.5.9.

Variable defined

X, a numeric array generated in 1.5.7-1.5.9.

1.5.9 The elements of X are calculated according to
the formula X(I)=(RHO(1)*(1—RHO(2))/(1—RHO(1)
**2))*X(I—-1) + (RHO(2) ~RHO(1)**2)/(1 — RHO(1)
*%2))*X(I—2) +GO1(I). Control is passed to 1.5.8.

Variable definitions

X, a numeric array generated in 1.5.7-1.5.9; RHO, a
numeric array calculated in 1.5.1 to 1.5.3; GO01, a nu-
meric array generated in 1.4.
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1.5.10 This loop generates the array GRHO. 1 is set
to 1, and each time control is returned to 1.5.11 from
1.5.12 it is increased by 1. If I>N, control passes to
1.6.1; if not, control goes to 1.5.12.

Variable defined
GRHO, a numeric array generated in 1.5.10-1.5.11.

1.5.11 The elements of GRHO are calculated by the
formula

GRHO(I)=
VI =RHOE)* (1§ RHOZ) = IFRHO(1)**2)*

(1/y/I=RHO)**2)*X(T)

Control returns to 1.5.10.

Variable definitions
X, a numeric array generated in 1.5.7-7.5.9; GRHO, a
numeric array generated in 1.5.10-1.5.11.

See Fig. 6 for flowchart of 1.5.

1.6 HALFGS Detailed Design: Level 2

In this module we generate the set of half-gaussian
random variables with one-step correlation LAMBDA(1),
two-step correlation LAMBDA (2). This set will have
standard deviation SIGMA*y/1 2/~ after multiplication
by the scaling factor SIGMA.

1.6.1 This loop generates the set of half-gaussians.
I is set to 1 then increased by 1 when control returns
from 1.6.2. If I > N, control goes to 1.7.1, otherwise
control passes to 1.6.2.

1.6.2 Each half-gaussian is calculated by the formula
GHALF(I) =ABS(SIGMA*GRHO(I)).

Variable defnitions

SIGMA, a simple numeric variable input in 1.2.3;
GRHO, a numeric array generated in 1.5.11-1.5.12;
GHALF, a numeric array generated in 1.6.

See Fig. 7 for flowchart.

1.7 PRNT Detailed Design: Level 2

This module prints out the array GHALF when re-
quired by the user.
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Input

ANSS, a simple string variable accepting only 1 charac-
ter. If ANS$=Y", the array GHALF is printed. If
ANS$="N’, the array is not printed. If ANS$=Y" or
‘N’ an error message is given and the loop is repeated
until a correct response is given by the user.

Qutputs

A. Prompting message “DO YOU WANT A PRINT-
OUT OF THE CORRELATED HALF-GAUSSIAN
RANDOM NUMBERS? (ANSWER YES OR NO):”

B. Error message “ONLY YES OR NO ANSWERS,
PLEASE”

C. Optional message “THE CORRELATED HALF-
GAUSSIAN RANDOM NUMBERS ARE™\],
GHALF(I) for I=1 to N (GHALF is the array of
half-gaussians)

D. Terminating message “END OF CORGS2”

1.7.1 We set OK=0 and let this be the condition
that an incorrect user response has been given (some-
thing other than Y or ‘N’).

Variable definition

OK, a simple numeric variable defined in 1.7.1 and
reevaluated in 1.7.4.

1.7.2 We set LOOP=1 and ask if OK=0. If OK=0
then control passes to 1.7.3, otherwise control is trans-
ferred to 1.7.7.

Variable definition

OK, a simple numeric variable defined in 1.7.1 and
reevaluated in 1.7.4.

1.7.83 Give prompting message A asking whether
the user wants a printout of the array GHALF.

Variable definition
GHALF, a numeric array generated in 1.6.

1.7.4 We set OK=1*(ANS$="Y) +2*(ANS$="N"). If
OK=0 is still true, the loop will be repeated because
a correct user response to A has not been given.

Variable definitions

OK, a simple numeric variable defined in 1.7.1 and
reevaluated in 1.7.4; ANS$, a simple string variable
input in 1.7.3.
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1.7.5 Determine if OK=0. If it does, pass control
to 1.7.6; if not, control goes to 1.7.2.

Variable definition

OK, a simple numeric variable defined in 1.7.1 and
reevaluated in 1.7.4.

1.7.6 Print error message B and return control to
1.7.2.

177 If OK=1, control passes to 1.7.8; if OK=2,
control goes to 1.7.9.

188

Variable definition

OK, a simple numeric variable defined in 1.7.1 and
reevaluated in 1.7.4.

1.7.8 Print message C, with the array GHALF given
to four decimal places.

Variable definition
GHALF, a numeric array generated in 1.6.

1.7.9 Print terminating message D.

See Fig. 8 for flowchart.
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>RUN

ENTER N, THE NUMBER OF CORRELATED HALF GAUSSIAN NUMBERS DESIRED: 10

ENTER LAMBDA(1), THE ONE-STEP CORRELATION OF THE HALF GAUSSIAN RANDOM
NUMBERS (NOTE THAT LAMBDA(1) MUST BE NON-NEGATIVE AND LESS THAN 1): .53

ENTER LAMBDA(2), THE TWO-STEP CORRELATION OF THE HALF GAUSSIAN RANDOM
NUMBERS (NOTE THAT LAMBDA(2) MUST BE NON-NEGATIVE AND LESS THAN 1): .28

ENTER SIGMA, THE STANDARD DEVIATION OF THE FULL GAUSSIAN DISTRIBUTION (NOTE
THAT SIGMA MUST BE POSITIVE): 3.1

THE INTERMEDIATE ONE-STEP CORRELATION IS: 0.7558
THE INTERMEDIATE TWO-STEP CORRELATION IS: 0.5574

DO YOU WANT A PRINTOUT OF THE CORRELATED HALF GAUSSIAN DISTRIBUTION?
(ANSWER YES OR NO): YES

THE CORRELATED HALF GAUSSIAN RANDOM NUMBERS ARE

. 7006
1.1159

6289
2.0626
1.7033
2.6059
3.6343
1.8570
3.0022
2.3408

O VONO B WN —

END OF CORGS2

Fig. 1. Typical CORGS2 run
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CORGS 2

DECLARE SUBROUTINE
ADDRESSES. INPUT N,
THE REQUIRED NUMBER
OF HALF GAUSSIANS

1.2 J

ASSIGN

DECLARE VARIABLES,
INITIALIZE RANDOM
NUMBER GENERATOR

s

INPT

INPUT Xy, X2, (THE

ONE AND TWO-STEP
CORRELATIONS) AND o,
THE STANDARD DEVIATION
OF THE CORRELATED FULL
GAUSSIAN DISTRIBUTION

1.4 ‘

INDGS

GENERATE ARRAY

(GO1) OF GAUSSIAN
RANDOM NUMBERS WITH
MEAN 0, VARIANCE 1

15 |

CORGS

GENERATE ARRAY
(GRHO) OF CORRELATED
RANDOM NUMBERS WITH
ONE-STEP CORRELATION
#1., TWO-STEP CORRE~
LATION #2; TERMINATE
PROGRAM (WITH ERROR
MESSAGE IF 1+ P,

-2p %5015 NOT
SATISFIED)

e |

HALFGS

GENERATE ARRAY
(GHALF) OF HALF
GAUSSIAN RANDOM
NUMBERS WITH ONE-
STEP CORRELATION A
AND TWO-STEP
CORRELATION Ay

1.7 l

PRNT

OUTPUT ARRAY GHALF
IF REQUIRED BY USER

ASSIGN

1.2.1

REAL GOT(N),X(N),
GRHO(N), GHALF(N),
LAMBDA(2), RHO(2),
SIGMA, ADJ, OK, R, S
STRING ANS$:1.

1.2.2 1

RANDOMIZE

Fig. 3. Module 1.2 flowchart

INPT

INPUT USING
CHAR (13) +' ENTER
LAMBDA (1), THE
ONE-STEP CORRE-
LATION OF THE
HALF GAUSSIAN
RANDOM NUMBERS
(NOTE THAT
LAMBDA (1) MUST
BE NON-NEGATIVE
AND LESS THAN
1):8#': LAMBDA (1)

152 |

INPUT USING
CHAR (13) + ENTER
LAMBDA (2), THE
TWO-STEP CORRE-
LATION OF THE
HALF GAUSSIAN
RANDOM NUMBERS
(NOTE THAT
LAMBDA (2)

MUST BE NON-
NEGATIVE AND
LESS THAN 1):

8#'; LAMBDA (2)

1.3.3 l

INPUT USING
CHAR (13) + ENTER
SIGMA, THE STAN-
DARD DEVIATION
OF THE FULL
GAUSSIAN DIST-
RIBUTION (NOTE
THAT SIGMA

MUST BE
POSITIVE):#:
SIGMA

Fig. 2. CORGS2 Level 1 flowchart
Fig. 4. Module 1.3 flowchart
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1.4.2

=

J=1

J=J+1

J>127

N
1.4.3

Y

GO1(1)=G01(1)
+RNDM-1/2

Fig. 5. Module 1.4 flowchart
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1.5.1
1=1 \ Y
{>27
—] I=1+1 /
N
1.5.2 l
IF(A(I)£1/2)
THEN p (1) =
SQR [2- ADJ-(1/3)ADS
-4/45A0.° - (‘%'9) ApJ* 1.5.6
-(——147]2?5) apJ PRINT USING PRINT CHAR (13)
~(0.05203) ADS® CHAR (13) + THE + LAMBDA (1) AND
: 5 INTERMEDIATE LAMBDA (2) ARE
~(0.05087) ADJ ] ONE (TWO)-STEP NOT ACCEPTABLE
_ CORRELATION 1S: CORRELATIONS'+
WHERE ADJ = %%%%%': p (1) CHAR (13) + CORGS
INORNCED) FOR 1=1,(2) 2 TERMINATED'
1.5.3 l 1.5.7 l
F (2()>1/2) X(1) = GoI(1) +
THEN P (1) = $:GOI(2), X(2) =
0.2862 +1,0558 (1) R-GOY(1) -S-G01<2)2
-0.0470 A%(1) -.9506 WHERE R=SQR [(I-Pl)
23+ 1.0072 x4 (14 £)/2:(1- P):
-.3516 2 (1+ P20 12)] AND .
] WHERE S=SGR [(1-7 )
(1= p'l)/z-zgl- A
(a+ 27|
Lse |
1=3 Y
1>N?
I=1+1
N
1.5.9 l

X = [p-0-P)-

1/0-p ] - X(=0) +
(p, P /02 D)
«X(1-2) + G U(I)

1.5.10
1=1

1>N?

¥

I=1+1

N
1.5.11

GRHO (1) = SR [(1- 7))
. (1 +p] -2;’?)/(1 - Pf)]
- X{1)

Fig. 6. Module 1.5 flowchart
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HALFGS

1.6.1

=1

1>N?
I=1+1

1.6.2 [N

GHALF(]) =
ABS( o« GRHO({})

Fig. 7. Moduie 1.6 flowchart

.74

OK =0

1.7.2
LOOP = | M
ok#o?

NEXT LOOP /

N
1.7.3 L
INPUT USING
CHAR(13)+ DO
YOU WANT A 1.7.8
PRINTOUT OF THE :
CORRELATED HALF PRINT \' THE
CORRELATED
GAUSSIAN DIST-
HALF GAUSSIAN
RIBUTION 2+CHAR(13)
! RANDOM NUM- .
+ (ANSWER YES A
OR NO): 8 :ANSS BERS ARE'\
' PRINT USING
l ' %% %%B8B
1.7.4 HHHKHKK'
I, GHALF()
OK = 1-(ANS$="Y") FOR I=] TO N
+2-(ANS$='N")

1.7.9 l
PRINT\ 'END
OF CORGS?'
1.7.6
PRINT\ 'ONLY
YES OR NO
ANSWERS PLEASE'

Fig. 8. Module 1.7 flowchart
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100010  I|CORGS2---MODULE 1

100020 ASSIGN=100200, INPT=100300, INDGS=100500, CORGS=100600,
HALFGS=100800, PRNT=100900

100030 INPUT USING CHAR(13)+CHAR(13)+'ENTER N, THE NUMBER OF CORRELATED’
+ HALF GAUSSIAN NUMBERS DESIRED:# ":N IMODULE #1.1

100040 GOSUB ASSIGN {MODULE #1.2

100050 GOSUB INPT IMODULE #1.3

100060 GOSUB INDGS IMODULE #1.4

100070 GOSUB CORGS IMODULE #1.5

100080 GOSUB HALFGS IMODULE #1.6

100090 GOSUB PRNT IMODULE #1.7

100100 END 1END MODULE #1

100200  1ASSIGN-DECLARE VARIABLES; INITIALIZE RANDOM NUMBER GENERATOR
---MODULE #1.2

100210 REAL GOT (N), X(N), GRHO(N), GHALF(N), LAMBDA(2), RHO(2), SIGMA
ADJ, OK, R, S

100220 STRING ANSS$:1 IMODULE #1,2.1

100230 RANDOMIZE 518997 |MODULE #1.2.2

100240 RETURN IEND MODULE #1,2

100300 HINPT-ENTER PROGRAM PARAMETERS---MODULE #1.3

100310 INPUT USING CHAR(13)+'ENTER LAMBDA(1), THE ONE-STEP CORRELATION!

+ OF THE HALF GAUSSIAN RANDOM'+CHAR(13)+' NUMBERS (NOTE THAT'
+ LAMBDA(T) MUST BE NON-NEGATIVE AND LESS THAN 1): 8#:LAMBDA(TY
IMODULE #1.3.1

100320 INPUT USING CHAR(13)+'ENTER LAMBDA(2), THE TWO-STEP CORRELATION'
+ OF THE HALF GAUSSIAN RANDOM'+CHAR(13)+' NUMBERS (NOTE THAT'
+ LAMBDA(2) MUST BE NON-NEGATIVE AND LESS THAN 1): 8#':LAMBDA(2)
{MODULE #1.3,2

100330 INPUT USING CHAR(13)+' ENTER SIGMA, THE STANDARD DEVIATION OF THE'
+ FULL GAUSSIAN DISTRIBUTION (NOTE'+CHAR(13)+' THAT SIGMA MUST'
+ BEPOSITIVE): #:SIGMA IMODULE #1.3.3

100340 RETURN 1END MODULE #1.3

Fig. 9. CORGS2 listing
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100500
100510

100520
100600

100610

100620
100630

100640

100650

100660
100670
100680
100690
100700
100710

100720

100730

Ll 00740

INDGS-GENERATE ARRAY OF RANDOM NUMBERS (NORMAL DISTRIBUTIONY)

WITH MEAN 0, VARIANCE 1---MODULE#] .4

GO1 (H=GO01 (H+RNDM-1/2 FOR J=1 TO 12 FOR =1 TON
MODULES #1.4.1,.2,.3

RETURN 1END MODULE #1.4

ICORGS~-GENERATE ARRAY OF RANDOM NUMBERS (NORMAL DISTRIBUTION)

WITH MEAN 0, VARIANCE 1; ALSO WITH ONE-STEP CORRELATION RHO(1),
AND TWO-STEP CORRELATION RHO(2)---MODULE #1,5

FOR =1 TO 2 MODULE#1.5.1

IF (LAMBDA(I)<=1/2) THEN
RHO(I)=SQR2*ADJ~(1 /3)* AD J* *2=(4 /45)* ADJ**3~(11 /1 89) *AD J* *4
~(722/14175)* AD J**5=(,05203)* AD J* *6(,05087) *AD J* *7)

WHERE ADJ=LAMBDA()*(P1/2-1)  IMODULE #1.5.2

IF (LAMBDA(1 >1/2) THEN
RHO(I)=.2862+1.0558*LAMBDA(I)~ .04 70*LAMBDA(1)**2
~.9506*LAMBDA(1)**3+1.0072*LAMBDA(I)* *4- . 3516 *LAMBDA(1)**5

MODULE #1.5.3

NEXT |

IF (14RHO(2)-2 *RHO(1)**2<=0) THEN STOP CHAR(13)+
‘LAMBDA(1) AND LAMBDA(2) ARE NOT ACCEPTABLE CORRELATIONS'+CHAR(1 3)+
‘CORGS2 TERMINATED'  {MODULES #1.5.4,.5

PRINT USING CHAR(I3)+THE INTERMEDIATE ONE-STEP CORRELATION IS:'
+ % %%%% - RHO(1)

PRINT USING CHAR(13)+ THE INTERMEDIATE TWO-STEP CORRELATION {S:’
+%, %%%%:RHO (2) IMODULE #1.5.6

R=SQR({1-RHO(1)**2)*(14RHO(1))/2* (1 -RHO(2))* (1+RHO(2)-2*RHO(1)* *2))
S=SQR((1 -RHO(1)**2)*(1-RHO(1)) /2* (1 -RHO(2))* (1 +RHO(2)-2*RHO(1 )* *2))
X{1)=R*GO1 (1)+5*GO1 (2)

X(2)=R*G01(1)-5*G01(2) IMODULE #1.5.7

X(H=GOT (N+RHO(1)* (1 -RHO(2)) /(1 -RHO(1 y**2))* X (1-1)+
((RHO@)-RHO(1)**2)/(1-RHO(1)**2))*X(I=2) FOR [=3 TO N
MODULES #1.5.8,.8

GHRO(1)=SQR((1-RHO(2))* (1 tRHO(2)~2*RHO(1)**2) /(1 -RHO(1)* *2))* X(1)
FOR I=1 TON MODULES #1,5.10,.11

RETURN IEND MODULE #1.5

Fig. 9 (contd)
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196

1000800

100810

100820

100900

100910

100920

100930
100940

100950

100960

100970

100980

100990

101000

HALFGS-GENERATE ARRAY OF CORRELATED HALF GAUSSIAN RANDOM NUMBERS
---MODULE #1.6

GHALF(I)=ABS(SIGMA*GRHO(I)) FOR I=1 TO N

RETURN 1END MODULE #1.6

PRNT-GENERATES OUTPUT WHEN REQUESTED---MODULE #1.7
FOR LOOP=1 UNTIL OK WHERE OK=0 MODULES #1,7.1,.2
INPUT USING CHAR(13)+DO YOU WANT A PRINTOUT OF THE CORRELATED'
+ HALF GAUSSIAN DISTRIBUTION?*+CHAR(13)+' (ANSWER YES OR'
+ NO): #:ANS$  IMODULE #1.6.3
OK=1*(ANS $='Y")+2* (ANS$="N") IMODULE #1.6.4
IF (NOT OK) THEN PRINTA'ONLY YES OR NO ANSWERS, PLEASE'
MODULES 1.7.5,.6
NEXT LOOP IMODULE #1.7.2

IF OK=]1 THEN PRINT\' THE CORRELATED HALF GAUSSIAN RANDOM NUMBERS ARE'N
ELSE GO TO 100980

PRINT USING '%%%% %%%.%%%%':1, GHALF(l) FOR I=1 TO N
MODULES #1.7,7,.8

IDECISION COLLECTOR NODE FOR 100960
PRINTN'END OF CORGS2! IMODULE #1.7.9

RETURN IEND MODULE #1.7

Fig. 9 (contd)
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